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An analysis of the stability and halo formation is presented for a breathing axisymmetric beam of uniform
density@Kapchinsky-Vladimirsky~KV ! beam# in a uniform focusing channel. Theoretical results are obtained
for the form of modes involving nonuniform charge density. In particular, the mismatch-tune depression space
is explored, both analytically and by numerical particle-in-cell simulations, to determine the stability limits and
growth rates of the most unstable modes. The implications for halo formation are then explored. Halo param-
eters obtained by simulations are compared with predictions of an analytical model for halo formation from the
breathing KV beam developed earlier. The practical applications of the results for high-current linear accel-
erators are discussed.@S1063-651X~96!05912-0#

PACS number~s!: 52.65.Rr, 29.27.Bd, 41.85.2p

I. INTRODUCTION

Interest has arisen recently in using ion linear accelerators
in high-current applications, such as the production of tri-
tium, the transformation of radioactive waste to species with
shorter lifetimes, and for fission and fusion drivers. Since
these applications require average currents in the 100-mA
range~100 times larger than that used previously!, beam loss
must be kept to the order of 1 ppm to avoid serious linear
accelerator activation. In particular, it is necessary to under-
stand emittance growth and halo formation in great detail in
order to produce an acceptable design.

Accordingly, recent attention has been focused on under-
standing the mechanism~s! by which halos are produced.
This includes a review of observations and related simula-
tions by Jameson@1#, a variety of simulations and experi-
ments by Reiser and co-workers@2#, and recent simulations
by O’Connellet al. designed to follow single-particle orbits
in a core beam@3#. Several models have been constructed to
explore resonances between particle oscillation frequencies
and the periodicity of the focusing system or core oscillation
modes@4,5#. Many of the simulations show the onset of cha-
otic motion at high space-charge levels.

In a recent publication@6#, we proposed a simple model in
which a Kapchinsky-Vladimirsky~KV ! beam, excited into a
uniform density ‘‘breathing’’ mode by some sort of mis-
match, interacts resonantly with individual oscillating ions. If
the ions find themselves outside the core for part of their
oscillation, the resulting nonlinearity of the ion oscillations
can lead to a phase lock with the breathing oscillation, pro-
ducing a halo whose parameters can be predicted and whose
appearance matches that in Wangler’s simulations@3#. The
unanswered question is, What is the mechanism by which

ions initially escape from the core in order to participate in
the formation of the halo?

Obviously, any unstable longitudinal or transverse collec-
tive modes involving the core are capable of moving par-
ticles outside the core. Studies of the transverse stability of a
matched KV beam@7,8# have shown that instabilities exist
for tune depressions~ratio of ion oscillation frequency with
space charge to that without space charge! of 0.4 or less. In
the present paper, we expand on a previous publication@9#
and analyze the instabilities of a breathing KV beam for
various collective modes involving nonuniform charge den-
sity. We find, not surprisingly, that modes involving a sig-
nificant breathing amplitude will be unstable at tune depres-
sions as high as 0.7 or 0.8. We then perform multiparticle
simulations with a mismatched KV beam for evidence of
these unstable modes and the role they play in halo forma-
tion.

II. BREATHING MODE

For a KV beam, the motion of an ion within the two-
dimensional uniform density beam traveling with axial ve-
locity v0 is governed by the linear equation

d2x

dz2
1k2x5

Ix

a2
, ~2.1!

wherek is the tune due to the external linear restoring force
and I is the perveance defined by

I5
eI0Z0c

2pMv0
3 . ~2.2!

HereZ05120p V is the impedance of free space,M is the
ion mass,c is the speed of light, andI 0 is the beam current.
The beam radiusa will vary periodically with the axial co-
ordinatez for an azimuthally symmetric breathing beam. We
assume thatk2 is independent ofz in the present work. An
identical equation applies fory for an axisymmetric beam.

The envelope equation corresponding to Eq.~2.1! is
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where the prime stands ford/dz and pe is the transverse
emittance of the beam. If we start witha(0)5a1,
a8(0)50, an integral of Eq.~2.3! gives

a8252I ln
a

a1
1k2~a1

22a2!1e2S 1a12 2
1

a2D , ~2.4!

which enables us to obtain the other value ofa ([a2) at
which a850, as well asS, the period of the breathing mo-
tion, given by

S52E
a1

a2 da

a8~a!
, ~2.5!

wherea8(a) is defined in Eq.~2.4!.
We now seta25be, whereb is in effect the Courant-

Snyder amplitude parameter that satisfies
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. ~2.6!

If we now change the independent and dependent variables
from z,x,y to

f5E dz

b
, u~f!5

x~z!

Abe
, v~f!5

y~z!

Abe
, ~2.7!

we find

ü1u50, v̈1v50, ~2.8!

where each dot denotes a derivative with respect tof. Thus
the breathing mode can be described by specifyingb as a
function of f, with periodf0. The transformation clearly
depends on the size of the ‘‘mismatch,’’ that is, on the rela-
tive amplitude of the breathing oscillation. For completeness,
we write the differential equation forb(f):

b̈

2b
511

bI

e
2k2b21

3

4

ḃ2

b2 . ~2.9!

If we scaleb so that

b~f!5s~f!/k ~2.10!

and define

a5I /ke, ~2.11!

Eq. ~2.9! can be written in terms of the single parametera as

s̈

2s
511as2s21

3

4

ṡ2

s2 . ~2.12!

In terms ofa ands, the period of the breathing motion~in
the variablesz andf) can be written as

kS5E
s1

s2 ds

s1/2p~s!
, f05E
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s2 ds
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, ~2.13!

where

p~s!5Fa ln
s

s1
1s12s1

1

s1
2
1

s G1/2,
s15

k

e
a1
2 . ~2.14!

Finally, we note that a matched beam~zero breathing ampli-
tude! has the matched amplitude

s05
a
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4
~2.15!

and that the tune depression for a matched beam is given by
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III. PHASE-SPACE DISTRIBUTION

We now wish to consider small perturbations from a uni-
form charge density breathing mode in the phase-space dis-
tribution. For this purpose, we use the variablesu(f),
v(f), andf and write

f ~u,v,u̇,v̇,f!5 f 0~u,v,u̇,v̇ !1 f 1~u,v,u̇,v̇,f!, ~3.1!

where the ‘‘unperturbed’’ distribution~including the breath-
ing mode! is

f 0~u,v,u̇,v̇ !5~t0 /p
2!d~u21v21u̇21 v̇221!. ~3.2!

Here t05I 0 /v0 is the line charge density of the beam. In
terms of the new variables, the Vlasov equation can be writ-
ten as

] f

]f
52u̇
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2 v̇

] f

]v
2ü

] f

]u̇
2 v̈

] f

] v̇
. ~3.3!

The unperturbed distribution is clearly a solution of Eq.~3.3!
if one uses Eq.~2.8!, the unperturbed equation of motion.

We now write the charge density~in x,y space! as

r01r15
1

beE du̇E dv̇@ f 01 f 1#. ~3.4!

This leads to

r05
I 0

pv0be
3H 1, u21v2,1

0, u21v2.1
~3.5!

and

r15
1

beE du̇E dv̇ f 1~u,v,u̇,v̇,f!. ~3.6!

We assume that the electric field due tor1 is derivable from
a scalar potentialG(u,v,f) such that
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and
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The equations of motion, including the force due to the
nonuniform charge distribution, are
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Keeping only terms linear inf 1 or r1 ~or G), Eq. ~3.3! be-
comes
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Sincef 0 is a function ofu
21v21u̇21 v̇2, as in Eq.~3.2!, we

can write

] f 0

]u̇
52u̇ f 08 ,

] f 0

] v̇
52v̇ f 08 . ~3.11!

If we now write

f 1~u,v,u̇,v̇,f!5g~u,v,u̇,v̇,f! f 08~u
21v21u̇21 v̇2!,

~3.12!

all operations onf 08 on the left-hand side of Eq.~3.10! will
cancel, leaving
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where the right-hand side is

R~u,v,u̇,v̇,f!5
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2
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Equations~3.8! and ~3.13! are coupled integro-differential
equations. Since the operator on the left-hand side of Eq.
~3.13! corresponds to the sinusoidal orbits in Eq.~2.8!, Eq.
~3.13! has a formal solution, which can be written as

g~u,v,u̇,v̇,f!5E
2`

f

dcR~u8,v8,u̇8,v̇8,c!, ~3.15!

where

u85uc2u̇s, v85vc2 v̇s,

u̇85u̇c1us, v̇85 v̇c1vs, ~3.16!

with

c[cos~f2c!, s[sin~f2c!. ~3.17!

We now proceed, as in the analysis for a matched KV
beam@7#, to guess at the form of the potentialG(u,v,f) and
to determine the perturbed phase-space distribution
g(u,v,u̇,v̇,f) using Eq.~3.15!. Using Eqs.~3.12! and~3.8!,
we then obtain]2G/]u21]2G/]v2 and require that it agree
with our guess forG. Remarkably, our guess, which is al-
most identical to the form used for the matched KV beam,
works once again.

We now conjecture thatG(u,v,f) is

G~u,v,f!5P~f!F~u,v !, ~3.18!

with

F~u,v !5~u1 iv !m2F1~2 j ,m1 j ;m11;u21v2!

5djm(
l

i 2l~m1 j1 l21!!

l ! ~m1 l !! ~ j2 l !!
~u1 iv ! l1m~u2 iv ! l ,

~3.19!

where djm5 j !m!/(m1 j21)!, and show in the Appendix
that Eqs.~3.8! and ~3.13! can both be satisfied as long as
P(f) satisfies the integral equation

P~f!52aE
2`

f

dcP~c!s~c!
]Q

]c
, ~3.20!

where

Q~f2c!5~21! j(
r

~21!r~m1 j1r21!!

r ! ~m1r !! ~ j2r !!
cosm12r~f2c!

5~21! j@djm#21cosm~f2c!

32F1„2 j ,m1 j ;m11;cos2~f2c!… ~3.21!

ands(f) anda are defined in Eqs.~2.10! and ~2.11!. To
recapitulate, we have confirmed that the conjecture for the
electrostatic potential in Eq.~3.18! leads to a perturbed phase
space density in Eq.~3.12! that reproduces the perturbed
space-charge density corresponding to the potential in Eq.
~3.18!, providedP(f) satisfies the integral equation in Eq.
~3.20!.

IV. DIFFERENTIAL EQUATION FOR P„f…

The integral equation forP(f) in Eq. ~3.20! can be con-
verted to a linear differential equation with periodic coeffi-
cients. As an illustration, we consider the casej52, m50,
for which

Q~f2c!5
1

2
22 cos2~f2c!1

3

2
cos4~f2c! ~4.1!

and
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]c
524 sin~f2c!cos~f2c!16 sin~f2c!cos3~f2c!

52
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2
1
3 sin4~f2c!

4
. ~4.2!

Equation~3.20! can then be written as

P~f!5aE
2`

f

dcP~c!s~c!Fsin2~f2c!

2
2
3sin4~f2c!

4 G .
~4.3!

We now take successive derivatives of Eq.~4.3! with respect
to f, obtaining contributions from both the upper limit of the
integral and the integrand. Specifically,

Ṗ~f!5aE
2`

f

dcP~c!s~c!@cos2~f2c!23cos4~f2c!#,

~4.4!

P̈~f!522aP~f!s~f!1aE
2`

f

dcP~c!s~c!

3@22sin2~f2c!112 sin4~f2c!#, ~4.5!

P
...

~f!522a@ Ṗ~f!s~f!1P~f!ṡ~f!#

1aE
2`

f

dcP~c!s~c!@24 cos2~f2c!

148 sin4~f2c!#, ~4.6!

Piv~f!522a@ P̈~f!s~f!12Ṗ~f!ṡ~f!1P~f!s̈~f!#

144aP~f!s~f!1aE
2`

f

dcP~c!s~c!

3@8sin2~f2c!2192 sin4~f2c!#. ~4.7!

It now is possible to construct a linear combination of Eqs.
~4.3!, ~4.5!, and~4.7! in which the integrals cancel. Specifi-
cally

Piv120P̈164P522a@ P̈s12Ṗṡ1Ps̈#14aPs ~4.8!

or

Piv1~2012as!P̈14aṡ Ṗ1~6424as12as̈!P50.
~4.9!

Sinces(f) in Eq. ~2.12! is a periodic function off with
periodf0, Eq. ~4.9! is a Mathieu-like equation forP(f).

We now define

Ṗ[L, L̇[K, K̇[H ~4.10!

and letV be the four-component vector (P,L,K,H). Equa-
tions ~4.9! and ~4.10! can then be written as the single
434 matrix equation

V̇5TV, ~4.11!

where the matrixT depends onf becauses depends on
f, and has the explicit form

T~f!5S 0 1 0 0

0 0 1 0

0 0 0 1

26414as22as̈ 24aṡ 22022as 0
D .

~4.12!

If one divides the breathing period into small intervals
df l , the matrix corresponding to one period can be written
as the~infinite! product

T5)
l

@11T~f l !df l #. ~4.13!

Diagonalization ofT then determines the stability of the
mode denoted byj ,m for the space chargea and the mis-
match contained ins(f). Specifically, the mode will be un-
stable if the absolute value of any of the eigenvalues ofT is
greater than 1.

For generalj andm, ]Q/]c can be written as the sum of
j1m/2 or j1(m11)/2 terms in the form

]Q

]c
5(

r50
g rsin~2 j1m22r !f. ~4.14!

By taking 2j1m or 2j1m11 derivatives ofP(f), it is
always possible to construct a linear combination that elimi-
nates all the integrals, as we did in Eq.~4.8!. The order of the
resulting differential equation is 2j1m for m even or
2 j1m11 for m odd, as is also the dimension of the vector
V and the square matrixT.

V. NUMERICAL STUDIES

To determine the stability of a particular mode of density
oscillation, we first solve Eq.~2.12! for the envelope oscil-
lation numerically and substitute the values ofs, ṡ, and s̈
for a breathing period into the product of Eq.~4.13!. The
eigenvalues of the transfer matrixT for a breathing period
can then be obtained for various values of the parameters
a ands1. The numerical calculations show that, for small
tune depression, the results for the eigenvalue converge rap-
idly as the number of subintervals reaches 1000. Since lower
space charge gives a larger breathing period@cf. Eqs.~2.13!
and~2.14!#, the number of steps to complete the matrix prod-
uct needs to be increased by makingdf l small in order to
achieve the required accuracy as the tune depression in-
creases. Another way to improve accuracy is to use the
Runge-Kutta method. By assuming that the initial condition
of the i th component of the vectorV is 1, and zero else-
where, thei th column of the one-turn mapT can thus be
obtained from the solutions ofV at the final point of one
period. The eigenvalue spectrum is then obtained after the
construction of the whole map.

If we use a fourth-order Runge-Kutta algorithm for large
tune depression, the number of steps needed to achieve the
required accuracy is much smaller than with the matrix prod-
uct. However, since a larger initial mismatch causes a larger
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and sharper amplitude of envelope oscillation, the numerical
integration scheme needs more steps to yield sufficiently ac-
curate results. Therefore, for high space charge, we use the
matrix product that is much faster than the Runge-Kutta
method and gives accurate results. For low space charge, the
situation is just the opposite. The two methods nevertheless
give convergent results with differences less than 10 ppm.

Starting with the integral equation forP(f) in Eq. ~3.20!
and making the transformation in a fashion similar to that
shown in Sec. IV, we obtain differential equations for
P30(f) and P40(f) similar to the one in Eq.~4.9! for
P20(f). In the case of a matched beam (s5s05constant!
Pjm(f) takes on the sinusoidal form exp(iljmf). In this case
the eigenvaluesl20, l30, andl40 satisfy the equations

~l20
2 216!~l20

2 24!52as0~l20
2 12!, ~5.1!

~l30
2 236!~l30

2 216!~l30
2 24!52as0~l30

4 24l30
2 148!,

~5.2!

~l40
2 264!~l40

2 236!~l40
2 216!~l40

2 24!

52as0~l40
6 226l40

4 1304l40
2 11296!. ~5.3!

Note that the breathing mode (l10
2 24)52as0 is always

stable and the matched beam’s stability limits of the modes
( j ,m)5(2,0),(3,0), and ~4,0! are where h limit50.2425,
0.3859, and 0.3985, respectively. In fact,m50 is the most
restrictive mode for allm and j54 is the most serious mode
that gives the largest threshold value ofh, i.e., the smallest
space-charge limit, for all (j ,0) modes@8#. Therefore, the
~4,0! mode is the least stable mode for the space-charge limit
of a KV beam. In Figs. 1–3 we show the stability diagram
for these three cases inm-h space, wherem[a1 /a0. The
value ofh limit on them51 axis for each case is confirmed in
the figures.

The cusps appearing in these stability diagrams are caused
by the resonances of the mode frequency. In Fig. 1, the deep
fissure up to the matched parameterm51 is where the phase
advance of the~2,0! mode oscillation during one period of
the breathing mode isp. Note that this resonance is where
the ratio of the breathing frequency to the mode frequency is

equal to 2. It is believed that the other slits appearing in the
stable domains are also due to the occurrence of resonances
for particular parameters of tune depression and mismatch.
As for the higher modes~3,0! and~4,0!, thef5p resonance
occurs outside of their stability limits. That is why the deep
fissure that meets them51 axis is not seen in either Fig. 2 or
3. One can also see that as the number of the radial mode
j is higher, not only does the stability limit ofh move
‘‘backward,’’ i.e., to smaller space charge, but also the stable
bandwidth for the mismatch parameterm becomes narrower.
This implies that, at least up toj54 for a KV beam, the area
of stability decreases asj increases. We have obtained also
some results on the stability of even higher modesj55 and
j56 mostly from direct multiparticle simulations described
below. Based on these results, one can conclude that their
stability boundaries are close to that for the modej54.
However, since both the numerical analysis and the mode
amplitude extraction from simulations are rather involved for
these high-order modes, we have not yet carried out the de-
tailed study.

Our numerical procedure in obtaining the eigenvalues of
T also provides the growth rate per breathing period in the
unstable region as a function ofm andh. In Figs. 1–3 we
also show the contours corresponding to growth rates of
5%, 10%, and 20%. The values form51 agree with those
obtained earlier@8,9#, which predicted instability for tune
depressions below 0.4. The present predictions are dramati-

FIG. 1. Stability limits and growth rates for thej52,m50
mode in the mismatch (m) tune depression (h) space. Contours for
growth rates of 0.05, 0.10, and 0.20 are shown, as well as growth
rates obtained from particle-in-cell~PIC! simulations.

FIG. 2. Same as in Fig. 1, but for thej53,m50 mode.

FIG. 3. Same as in Fig. 1, but for thej54,m50 mode.
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cally different: instabilities are possible for almost all tune
depressions if the mismatch is sufficient.

VI. MULTIPARTICLE SIMULATIONS

We have also performed multiparticle simulations for an
azimuthally symmetric breathing KV beam. Form50 it is
easy to show that the charge density of the mode (j ,m) is
proportional to

r j0~w!;2¹2Gj0~w!54 j 2Gj0~w!/~12w2!. ~6.1!

The orthogonality relation for the hypergeometric function
2F1 then yields

E
0

1

w dw r j0~w!r j 80~w!~12w2!5d j j 8/4j , ~6.2!

which can be used to project out each value ofj from the
numerical results for the charge distribution. Using this pro-
cedure, we start with the order of 105 particles distributed in
phase space according to Eq.~3.1! for a particular mismatch
m and depressed tuneh. All unstable modes will start to
grow from the noise. By projecting out the amplitude of the
j th mode charge density we can determine whether it is un-
stable and, if so, what its growth rate is. It is of course
necessary to examine the growth at low amplitude since the
phase-space density of the core will be altered when the un-
stable modes become too large.

This procedure was followed for several different values
of m andh using j52,3,4. The results are shown on Figs.
1–3 as specific points for which the growth rates are mea-
sured. As can be seen, the growth rates obtained in the mul-
tiparticle simulations agree closely with those predicted from
the matrix eigenvalues.

The particle-in-cell simulations are also used to study halo
formation in the presence of instabilities, as a function of
tune depressionh and mismatchm. We load a mismatched
initial KV distribution choosingr i5m r̃ i , r i85 r̃ i8/m, where
r̃ i , r̃ i8 correspond to the matched distribution, and use leap-
frog integration to track the particles. A typical range of the
simulation parameters is as follows: time stepDt5T/100,
whereT is the period of breathing oscillations; total number
of particlesNpar516K–4096K, whereK51024; and radial
mesh sizeDr5a/128–a/16. In simulations we use dimen-
sionless variables normalized in such a way that
amax8 amin51 and matched radiusa51/Ah.

The beam evolution depends on the values ofh andm. If
we look at the maximal radiusrmax of the whole ensemble of
particles, a rather typical picture of the beam behavior is
shown in Fig. 4 for the particular case ofh50.7 and
m50.8: after a number of breathing oscillations a fast
growth of rmax occurs, after which the maximal radius shows
more or less stable oscillations around a new level, which is
usually more than twice the initial one. The beam distribu-
tion in the transverse phase spacer ,r 8 after that moment
clearly shows the presence of the beam halo; see Fig. 5. This
figure is a stroboscopic phase-space plot for a small sample
of particles with low angular momenta. The number of par-
ticles that escape from the beam core to larger radii and thus
form the halo is counted at each integration step. We define

the halo intensityh as the number of particles outside the
boundaryr b51.75a divided by the total number of particles
in the beam. While such a definition looks rather arbitrary, it
is convenient to compare beam halos in the wide range on
the tune depressions. The evolution of the halo intensity is
shown in Fig. 6 for the same parameters as in Figs. 4 and 5.

Exploring the KV beam behavior for various values of the
tune depression and mismatch reveals the picture shown in
Fig. 7. The marks on the (h,m) plane have the following
meaning:H corresponds to beam instability with halo forma-
tion and usually with a noticeable growth of the beam rms
emittance,U means that the beam is unstable, but a halo is
not observed, at least at the level detectable in simulations
done, andS indicates beam stability. One can see that even
the matched KV beam is unstable for tune depression
h<0.4, in agreement with the existing theory@7# and earlier
simulations@8#. The most intriguing feature of the diagram
shown is the lack of any essential dependence onh for mis-
matched beams. On the contrary, the qualitative changes de-

FIG. 4. Maximal beam radius versus the number of breathing
oscillations forh50.7 andm50.8. Stars are for the average over
the period, dots show the minimal and maximal values.

FIG. 5. Stroboscopic plot in the transverse phase space for 125
particles with low angular momenta. The dark elliptic arc corre-
sponds to the initial distribution (h50.7,m50.8).
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pend primarily onm. Thus, whenm changes from 0.6 to 0.8,
the ratio of the final beam rms emittance to the initial one
decreases from 1.7–2 to 1.03–1.07. There is some depen-
dence onh of the number of breathing periods after which
the beam radius starts to grow noticeably and the halo forms.
For example, with the 40% mismatchm50.6, it takes 10–20
periods for the beam to reach its maximal size forh50.3,
while for h50.9 the same occurs in 50–90 periods. This is
related to the fact that the growth rates of the unstable modes
are larger for smaller values of the tune depressionh, as seen
in Figs. 1–3.

To make a comparison with predictions of the analytical
model of halo formation via the parametric resonance with
breathing oscillations@6#, the ratio of the halo radius to the
matched beam radius is plotted in Fig. 8. One can see that
this ratio is almost independent of the tune depression for a
given mismatch and slightly lower for smaller mismatches.
For m50.8 there is better agreement with the analytical
model, as it should be, since the latter is applicable for small
mismatches. Since the beam matched radiusa}1/Ah, the
same scaling law holds for the halo radius.

The halo intensityh defined above is shown in Fig. 9 as a
function of tune depression and mismatch. It can be as large
as a few percent for mismatchm50.6 and decreases an order
of magnitude as the mismatch decreases from 40% to 20%
for a given tune. As for an apparent decrease ofh as h
decreases for a fixed mismatch, it is due to the definition
used: we count particles in the halo withr.1.75a, so that
the boundary radius increases as 1/Ah. If we use instead a
fixed boundary, the same for all tunes, the halo intensity
would be larger for larger space charge.

VII. SUMMARY AND CONCLUSIONS

We have analyzed the stability of a breathing KV beam
by constructing the eigenmodes for charge-density fluctua-
tions. For these we determined the stability limits for the
m50, j52,3,4 modes in the mismatch (m) tune depression
(h) space as well as the growth rates per breathing period
when the mode is unstable. We then used a multiparticle
simulation to confirm both the stability limit and the growth
rates.

These calculations show clearly that a breathing beam is
much more likely to be unstable than a perfectly matched

FIG. 6. Halo intensity vs the number of breathing oscillations.
Stars are for the average over the period, dots show the minimal and
maximal values (h50.7,m50.8).

FIG. 7. Beam behavior vs tune depressionh and mismatchm
~see the text for the legend!.

FIG. 8. Ratio of halo radius to the matched beam radius vs tune
depressionh for mismatchm50.6,0.7,0.8. Curves show predictions
of the analytical model.

FIG. 9. Halo intensity vs tune depressionh: long-dashed line,
m50.6; short-dashed line,m50.7; and dotted line,m50.8. Points
with error bars are from simulations, curves fit the data.

6794 54GLUCKSTERN, CHENG, KURENNOY, AND YE



beam. For example, with a matched beam, thej54 mode is
stable as long as the tune depression is not belowh50.4,
while with a mismatch parameterm50.9 (;10% mismatch!
the j54 mode is unstable even ath50.8. At the same time,
the growth rates are much smaller at higher values ofh. In
fact, multiparticle simulations indicate that the instabilities
are highly nonlinear and appear to saturate without excessive
growth.

The simulations reveal also that stability of a mismatched
KV beam, as well as its halo intensity, depends primarily on
the mismatch, not on the tune depression. The numerical
results show, particularly, that the ratio of the halo radius to
that of the matched beam is independent ofh, and this
agrees reasonably well with predictions of the analytical
model @6# for halo formation.

Though our analysis is valid only for a KV beam, we
believe that similar instabilities will be present in other equi-
librium beam distributions when they perform collective os-
cillations such as breathing. We plan to examine multipar-
ticle simulations for other phase-space distributions such as
the waterbag.

The implication of the above conclusions is clear. Every
effort must be made to minimize beam mismatch, particu-
larly when transitions in the beam channel occur. In addition,
designs should use modest values of the tune depression. In
this way we may be able to minimize or avoid the presence
of beam instabilities, which are likely to lead to halo forma-
tion.
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APPENDIX

In this appendix we show that the conjecture in Eqs.
~3.18! and ~3.19! correctly satisfies Eqs.~3.8! and ~3.13!.
HereP(f) is a function periodic inf ~with periodf0, the
same as that of the breathing oscillation!, which is to be
determined. The corresponding charge density, according to
Eq. ~3.8!, is

r1~u,v,f!52
4e0
e

P~f!

b~f!
djm(

l

~21! l~m1 j1 l21!!

~ l21!! ~m1 l21!! ~ j2 l !!

~u1 iv ! l1m21~u2 iv ! l21

5
4e0
e

P~f!

b~f!
djm(

l

~21! l~m1 j1 l !!

l ! ~m1 l !! ~ j212 l !!

3~u1 iv ! l1m~u2 iv ! l , ~A1!

with m and j21 being the number of azimuthal and radial
nodes in the perturbed charge density.

From Eq.~3.16!, we have]u8/]c5u̇8 and]v8/]c5 v̇8.
We therefore can write Eq.~3.14! as

R~u8,v8,u̇8,v̇8,c!5
2e

Mv0
2

b~c!

e
P~c!

]F~u8,v8!

]c
~A2!

and obtaing from Eq. ~3.15! as

g~u8,v8,u̇8,v̇8,f!5
2e

Mv0
2e
E

2`

f

dcP~c!b~c!
]F

]c
~u8,v8!.

~A3!

We now write

u6 iv[we6 iu, u̇1 i v̇5ze6 ix, ~A4!

and from Eq.~3.16! find that

u86 iv85wce6 iu2zse6 ix. ~A5!

From Eqs.~3.2!, ~3.8!, and~3.12! we then can write

r15
t0

p2beE E z dz dx g~w,u,z,x!d8~w21z221!

52
t0

pbe

]

]z2
^g&xuz2512w2, ~A6!

where^ &x stands for the average overx. From Eq.~A3!

^g&x5
2e

Mv0
2e
E

2`

f

dcP~c!b~c!
]

]c
^F~u8,v8!&x . ~A7!

Using Eq.~3.19!,

^F~u8,v8!&x5djm(
l

~21! l~m1 j1 l21!!

l ! ~m1 l !! ~ j2 l !!

3^~wceiu2zseix! l1m

3~wce2 iu2zse2 ix! l&x . ~A8!

We now expand the two factors within̂&x in powers of
zse6 ix. The average overx vanishes unless the power of
zse6 ix is the same in each factor. Thus
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^F~u8,v8!&x5djme
imu3(

l
(
p

~21! l~m1 j1 l21!! ~wc!2l1m22pz2ps2p

~ l2p!! ~m1 l2p!! ~ j2 l !!p!p!
. ~A9!

Guided by Eq.~A6! we find

]

]z2
^F&xuz2512w2

5djmw
meimucm(

l

~21! l~m1 j1 l21!!

~ j2 l !!

3(
p

1

~m1 l2p!! ~ l2p!!(q (
r

3
w2qc2r~21!q1r

~q2 l1p!! ~ l2q21!! ~r2 l1p!! ~ l2r !!
,

~A10!

where we have collected the exponents ofw andc to obtain
w2qc2r by using

z2p225~12w2!p21

5(
q

~21!q2 l1p~p21!!

~q2 l1p!! ~ l2q21!!
w2q22l 12p ~A11!

and

s2p5~12c2!p5(
r

~21!r2 l1pp!

~r2 l1p!! ~ l2r !!
c2r22l12p. ~A12!

The sum overp in Eq. ~A10! can now be performed@10#
using

(
p

1

~A1p!! ~B2p!! ~C1p!! ~D2p!!

5
~A1B1C1D !!

~A1B!! ~C1D !! ~A1D !! ~B1C!!
. ~A13!

This makes it possible to do the sum overl , using

(
l

~21! l~ l1E!!

~A1 l !! ~B2 l !! ~C1 l !!

5
~21!B~E2A!! ~E2C!!

~A1B!! ~B1C!! ~E2A2B2C!!
. ~A14!

Remarkably, this leads to the factorization of Eq.~A10! into
the product of a factor depending onw and a factor depend-
ing on c. Specifically,

]

]z2
^F&xuz2512w2

5djmw
meimu~21! j(

q

~21!qw2q~m1 j1q!!

q! ~m1q!! ~ j2q21!!

3(
r

~21!rc2r1m~m1 j1r21!!

~m1r !! r ! ~ j2r !!
, ~A15!

where the first factor closely resembles the second factor in
Eq. ~3.19!, using u6 iv5we6 iu and l→q. Using Eqs.
~3.19!, ~A6!, and~A7! and canceling the factor depending on
w on each side of the equation, we finally obtain an integral
equation forP(f),

P~f!52aE dcP~c!s~c!
]Q

]c
, ~A16!

whereQ(f2c) satisfies Eq.~3.21!.
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